Unfolding Lattice Polygons on Some Lattice Polyhedra∗
نویسنده
چکیده
We consider the problem of unfolding lattice polygons embedded on the surface of some classes of lattice polyhedra. We show that an unknotted lattice polygon embedded on a lattice orthotube or orthotree can be convexified in O(n) moves and time, and a lattice polygon embedded on a lattice Tower of Hanoi or Manhattan Tower can be convexified in O(n) moves and time.
منابع مشابه
For information about obtaining copies of this volume contact
We consider the problem of unfolding lattice polygons embedded on the surface of some classes of lattice polyhedra. We show that an unknotted lattice polygon embedded on a lattice orthotube or orthotree can be convexified in O(n) moves and time, and a lattice polygon embedded on a lattice Tower of Hanoi or Manhattan Tower can be convexified in O(n) moves and time.
متن کاملOn Unfolding Trees and Polygons on Various Lattices
We consider the problem of unfolding lattice trees and polygons in hexagonal or triangular lattice in two dimensions. We show that a hexagonal/triangular lattice chain (resp. tree) can be straightened in O(n) (resp. O(n)) moves and time, and a hexagonal/triangular lattice polygon can be convexified in O(n) moves and time. We hope that the techniques we used shed some light on solving the more g...
متن کاملar X iv : 0 70 6 . 41 78 v 1 [ m at h . C O ] 2 8 Ju n 20 07 Lattice polytopes of degree 2 Jaron Treutlein
Abstract. A theorem of Scott gives an upper bound for the normalized volume of lattice polygons with exactly i > 0 interior lattice points. We give a new proof for this theorem and classify polygons with maximal volume. Then we show that the same bound is true for the normalized volume of lattice polytopes of degree 2 even in higher dimension. From a theorem of Victor Batyrev the finiteness of ...
متن کاملMinkowski decomposition of convex lattice polygons
A relatively recent area of study in geometric modelling concerns toric Bézier patches. In this line of work, several questions reduce to testing whether a given convex lattice polygon can be decomposed into a Minkowski sum of two such polygons and, if so, to finding one or all such decompositions. Other motivations for this problem include sparse resultant computation, especially for the impli...
متن کاملUnfolding and Reconstructing Polyhedra
This thesis covers work on two topics: unfolding polyhedra into the plane and reconstructing polyhedra from partial information. For each topic, we describe previous work in the area and present an array of new research and results. Our work on unfolding is motivated by the problem of characterizing precisely when overlaps will occur when a polyhedron is cut along edges and unfolded. By contras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007